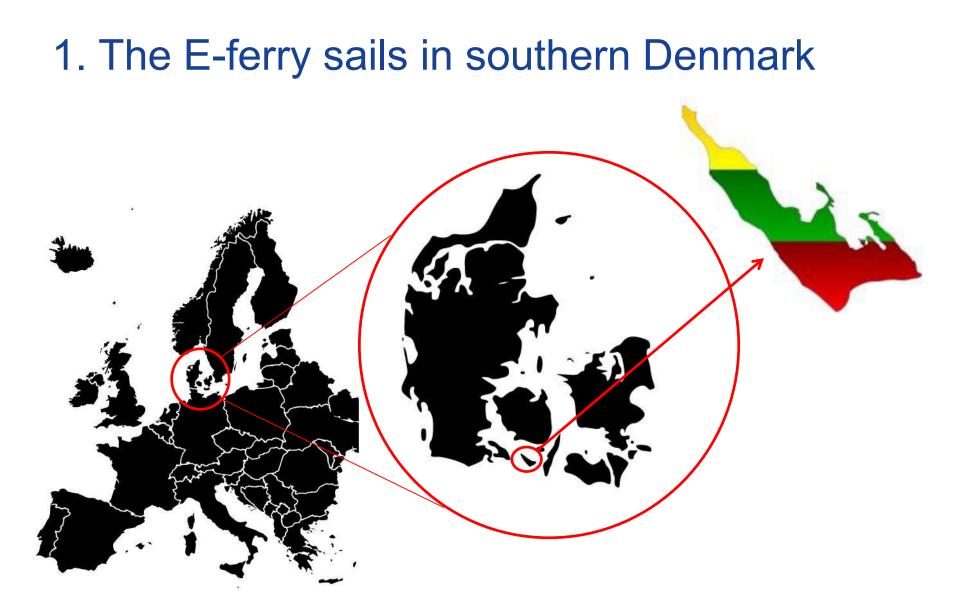


Evaluating the E-ferry systems and safety measures

Halfdan Abrahamsen

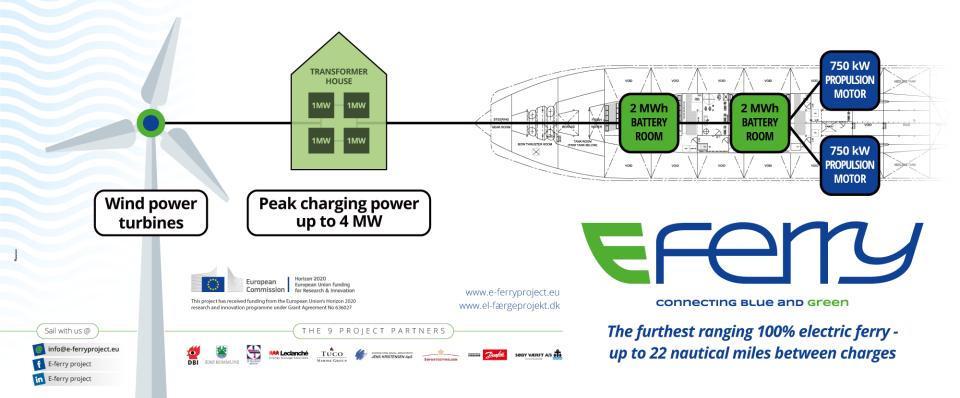
Information Manager, Renewable Energy Municipality of Ærø, Denmark Email: hab@aeroekommune.dk


1. The E-ferry and the E-ferry systems

2. Benefits from electric operation

3. Potential for electric operation

4. Next steps for a transition

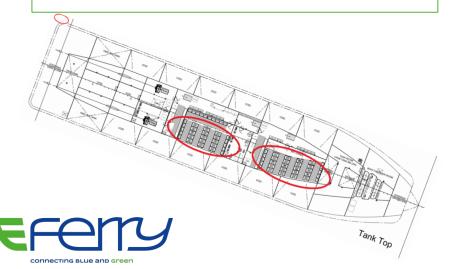


1. The E-ferry sails 22nm during a roundtrip

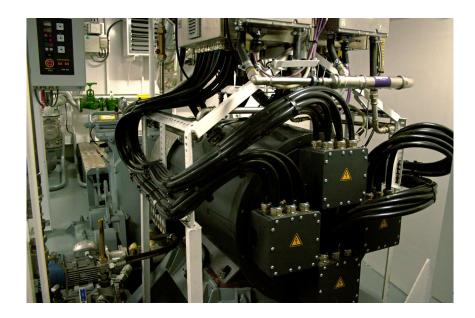
1. The E-ferry systems, simplified

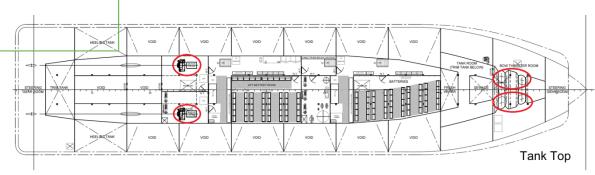
1. Charging the E-ferry

- 4 x 1.2 MW transformers
- 4.4 MW peak charging
- Up to 6,000 amps
- Ramp-based charging arm



1. The batteries


- Lithium-ion Graphite/NMC
- 4.3 MWh
- 56 tons
- 20 separate strings in two rooms
- Type approved for maritime use
- Leclanché
- Redundancy (seperate systems)



1. The engines

- 2 x propulsion engines
 - ✓ 750 kW/motor (1000 HP)
 - ✓ 950 kg/motor
- 2 x thruster engines
 - ✓ 250 kW/motor
 - ✓ 465 kg/motor
- Fixed magnet
- Danfoss Editron

1. Safety: Redundancy

- Redundancy: Backup if main system fails
- Redundancy on the Ellen:
- 2 seperate battery rooms
- 2 seperate electrical systems
- 1 battery room = 1 propulsion sys.
- 1 battery room enough to sail
- Ample reserve power

1. Safety: Fire prevention/fighting

- Fire prevention
 - ✓ Electronic probes (heat/gas)
 - ✓ Physical probe (wire)
 - ✓ Water cooling
- Fire fighting equipment
 - ✓ Full automation
 - ✓ Special foam for battery fire
 - ✓ Sprinklers for regular fire
- Gas ventilation
 - ✓ Vents from batteries to deck
- Training

connecting Blue and Green

✓ All crew are trained

1. Safety: Passenger safety

MOB system: Hoist and sling Life rafts: Double capacity, complete capacity on either side (200 pax) Life vests: Stored in seats

1. Efficiency: Weight and resistance

Hull: Hydrodynamic hull design

Deck: Open car deck

Salon: Almost at water level

Spoiler: Composite not implemented

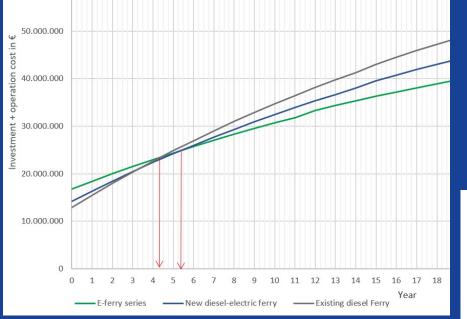
2. Benefits from electric operation

Reduced pollution and GHG emissions

 2000 tons CO2, 41 tons NOx, 1.3 tons SO2, 2.5 tons particulates annually (conservative estimate based on Danish grid mix)

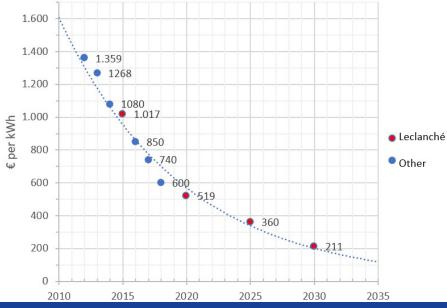
High energy efficiency

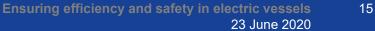
- 85 % energy efficiency (more than double of a diesel)
- Hydrodynamic hull design
- Weight reduction


2. Benefits from electric operation

Reduced costs

- Larger up-front investment
- Lower operating costs due to
 - Lower fuel prices
 - Less maintenance
 - Smaller crew
- Life-cycle economy
 - Fully electric is cheaper than diesel or diesel-electric
 - Operator saves 24 % 36 % over 30 year life
- Reduced noise and vibration
 - Improved comfort for crew, passengers and neighbors


2. Fully electric systems are cheaper



Battery prices have dropped drastically in recent years ->

<- Life-cycle costs of an Ellen II versus diesel and diesel-electric ferries

Battery system price development and forecast

3. Potential for electric operation

What do we know?

- Green Ferry Vision (2015): 65-80% of Nordic ferry routes are suitable
- Siemens Danmark (2016): 7 in 10 Danish ferry routes would be more profitable
- E-ferry Business Study (2018): Fully electric operation is feasible on 900 ferry routes in Europe

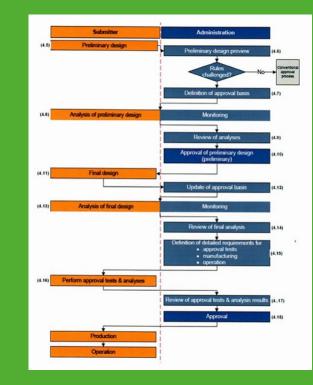
4. Next steps for a transition

1) Standardization

<image>

- Charging systems
- Communication between systems and providers
- Type approvals
 Sharing experiences
 European/global standards?

4. Next steps for a transition


2) Battery life cycle

- Optimizing weight and energy density
- Reducing pollution from battery production
- Recycling procedures
- Second life

3) Regulatory framework

- Battery specific regulations
- Authorities familiar w. process
- Flag state/regional strategy
- Parameters in tenders
- Education (STCW)

Contact information and references

Halfdan Abrahamsen Municipality of Ærø Ellenet 10, DK-5960 Marstal, Ærø, Denmark Tel. +45 63 52 50 64 E-mail: hab@aeroekommune.dk

e-ferryproject.eu el-færgeprojekt.dk

Eferryproject Den bæredygtige energiØ Ærø

e-ferry-project

References: Hagbarth (2015), *Market analysis*, Green Ferry Vision.

Kristensen et al. (2018), *The E-ferry: Energy efficient hull design*, TRA2018.

Larsen et al. (2018), Speeding up the Transition to Partially (Hybrid) or Fully Electric Waterborne Transportation through Education and Skills Upgrading, TRA2018.

Siemens (2016), Electrification of Denmark's ferry fleet.

E-ferry evaluation report: E-ferry homepage